Lesson 19. Local Minima and Maxima

1 Local minima and maxima

- Let *f* be a function of two variables
- f has a **local maximum** at (a, b) if $f(a, b) \ge f(x, y)$ for all (x, y) "close" to (a, b)
- f has a **local minimum** at (a, b) if $f(a, b) \le f(x, y)$ for all (x, y) "close" to (a, b)

Example 1. The contour map for $f(x, y) = x^4 + y^4 - 4xy + 1$ is shown below. Find the local maxima and minima of *f*.

2 Critical points: how to find local minima and maxima

• (a, b) is a **critical point** of f if

or if one of these partial derivatives does not exist

- If f has a local minimum or maximum at (a, b), then (a, b) is a critical point
- Finding local minima and maxima of *f*:
 - 1. Find all critical points of f
 - 2. Categorize each critical point using the second derivatives test:

• Let
$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$$

• If
$$D(a, b) > 0$$
 and $f_{xx}(a, b) > 0$, then $f(a, b)$ is a

• If
$$D(a,b) > 0$$
 and $f_{xx}(a,b) < 0$, then $f(a,b)$ is a

• If D(a, b) < 0, then (a, b) is a

of f

- If D(a, b) = 0, the test gives no information
- Saddle points
 - Highest point in one direction, lowest point in the other direction
 - Graphically:

• Saddle points look like hyperbolas in contour maps (see (0, 0) in Example 1)

Example 2. Find the local minimum and maximum values and saddle points of $f(x, y) = x^4 + y^4 - 4xy + 1$.

Example 3. Find the local minimum and maximum values and saddle points of $f(x, y) = y(e^x - 1)$.